
C-THRU™ Product Datasheet $Rev: 3$

A communications software library, currently supporting POSIX systems; portable to other systems as
required. Written in ISO standard C. Customer-facing interfaces are:

Interface

An Application links libcthru before libc to extend
the OS's socket API to provide a new protocol family,
PF_CTHRU. It abstracts multiple Connection Methods
giving underlying transports as modular back-ends:

• Provides an end-to-end socket connection.
• Berkeley Socket API; can add other front-ends.
• Provides SOCK_STREAM and SOCK_DGRAM.
• Optional AF_CTHRU customer-designated addresses

for ease of forming overlay networks.
• Transparently switches Method when necessary,

whilst keeping the Application's socket open.
• Maintains a reserve pool of pre-connected Methods

for fail-over throughout the lifetime of a socket.

Infrastructure Topology

Instances of libcthru are orchestrated by customer-
hosted Caches (one per customer); these cache new
Methods to update libcthru, and log usage statistics
to help improve design of new Methods.

• Customer traffic is sent peer-to-peer for efficiency.
This helps balance the load for bandwidth.

• The Server updates libcthru with new Methods as
and when they become available. Method updates
provide new connection techniques.

• The connection to the Cache is also PF_CTHRU.
• Caches and servers may be clusters of machines,

rather than single nodes, for load balancing.

Internal to the library are the set of connection Methods, and the algorithm to select which are used:

Connection Methods

Methods abstract arbitrary transports providing a
uniform API for I/O. These can be produced bespoke
as per customer requirements. Methods may tunnel
over other protocols of any network layer:

Examples:
• Simplest case is a direct IP connection.
• Tunnelling over HTTP to circumvent firewalls. Or

more extreme, e.g. a tunnel over DNS.
• NAT traversal.
• Stenographic tunnels, and balancing traffic over

multiple Methods for statistical frequency profiles.
• Non-IP transports, e.g. TETRA.
• Methods may or may not provide encryption.

Method Selection

Methods are selected by launching Probes to query
the network to efficiently find which is most suitable.
This selection is ongoing, and adjusts to fit the
changing conditions of the network. Probes yield
Results; Methods depend on sets of Results, forming
a dependency graph:

Probes measure any quantifiable resource, such as
latency, bandwidth, the ability to send certain packet
types, or connect to ports. Probes are low overhead,
as samples can often be taken from existing traffic.

Probe launching is minimal. E.g. if Probe 1's result for
Method A (indicated “x”) makes Method A non-viable,
libcthru can avoid needing to launch Probe 2.

Bubblephone Limited
Sussex Innovation Centre
Science Park Square
University of Sussex
Brighton BN1 9SB
Tel +44 (0) 1273 704 535
http://www.bubblephone.com/ 1

libcthru libc

PF_CTHRU PF_*

libcthru libcApp

App

Bubblephone

Customers

Server

PF_INET PF_INET

Cache Cache

App
App

App
App

App

Tunnel

Probes 1 2 3

A B C

Results

Methods
x

http://www.bubblephone.com/

Constraints and Requirements

• libcthru is threadsafe; the Application needn't be.
• Hosted ISO C90 or C99 environment. APIs are C90.
• Dynamic linking (ELF or Mach)
• Requires pthreads. Portable to alternative

threading back-ends as required.

• libcthru maintains a single file, storing state, logs
and other internal data.

• Currently unimplemented pending use-cases:
sendmsg(SCM_RIGHTS); AF_INET on PF_CTHRU;
fcntl(F_GETFD, F_GETFL); fork().

Application Notes

C-THRU's functional features are broadly: Making a connection in situations where it's difficult to connect
Keeping a connection open when roaming between networks
Maintaining quality as situations change

For quality maintenance, Results gathered during Method Selection may be fed back to Applications by
passing a callback function through the setsockopt() interface; this function is called asynchronously when
new Results are available. Applications vary widely in their use of this. Two examples from real use-cases:

VoIP or IPTV

A typical VoIP or IPTV Application streams media over
a SOCK_DGRAM connection, permitting packet loss as
the traffic is time-sensitive; resending lost packets
would cause delays in reconstructing the media
stream.

For situations with limited bandwidth (such as a
residential ADSL connection), the capacity available
for use may vary as unrelated traffic makes use of
the same connection.

It is desirable to make the best use of the available
bandwidth for the best quality stream. The bandwidth
determines which codecs may be used for encoding
the audio or video media. If more bandwidth is
available, a higher quality codec may be used. Some
codecs provide for variable compression.

Using C-THRU, these Applications may either scale
the codec as the occupied bandwidth changes, or
temporarily select an alternate codec; the Application
supplied callback is called once when the Result's
value become out of bounds, and again when its
value returns within range.

Mobile Networking for Vehicles

Automated vehicles are often controlled from a
central location. These may communicate over
intermittent connections made unreliable from
physically moving between different wireless base
stations, or even between access points of different
network types (often supplied for fail-over should one
network malfunction).

These wireless networks may be subject to channel
saturation (malicious or otherwise) from third parties,
or simply from two vehicles passing through the
same area.

Probe feedback for data prioritisation allows these
vehicles to prioritise critical traffic (such as control
data and logs) whilst reducing non-essential traffic
such as CCTV video feeds, or, in extreme cases,
cutting the video feed entirely when reduced to low
bandwidth auxiliary connections.

A comprehensive list of use-cases is available on request, giving each product feature in context.

2

Occupied

Bandwidth

